KOUNDINYA VINNAKOTA

Ph: 240 704 3580 | Email: vkd@umd.edu https://www.linkedin.com/in/koundinyav/ | https://github.com/koundinyavinnakota

Current graduate student pursuing MEng in Robotics with strong fundamentals in data structures, algorithms & programming skills and internship/project work experience in automotive manufacturing and product development

EDUCATION & CERTIFICATIONS

. M. Eng. in Robotics, UMD College Park

Aug 2021 - Present; Current GPA: 3.9/4

• B. Tech in Mechanical Eng., Jawaharlal Nehru Tech Univ., India

• Dassault Systems-Certified SolidWorks Design Associate

Jun 2021; GPA 8/10

RELEVANT COURSEWORK

Robot Modeling, Control of Robotics Systems, Planning for Autonomous Robots, Perception for Autonomous Robots, Autonomous Robotics, Statistical Pattern Recognition, Deep Learning, Rehabilitation Robotics

TECHNICAL SKILLS

Coding Skills C++, Python, Core Java, C, Data Structures & Algorithms, Selenium

Robotics Frameworks OpenCV, ROS

Simulation Skills MATLAB, Gazebo, Arduino, Ansys-Workbench, Ansys-Fluent

Web Designing Skills JavaScript & Bootstrap, HTML5 and CSS3

CAD Skills SolidWorks, AutoCAD

INTERNSHIP EXPERIENCE

NIST, Marvland; Developer Intern Sep 2021 - Present

Developing GUI using Python and TkInter for ARIAC scenarios allowing fast prototyping of Gazebo simulation environments.

• GUI will help developers and competitors generate scenarios for the Agile Robotics for Industrial Automation.

Cognizant, Hyderabad, India;

Software Intern

Jan 2021 - Jun 2021

Quality and Programmer Intern using Java, Agile, Selenium and API framework.

• Programming in Java in Agile framework; Quality Assurance using Selenium Framework, APIs, and SQL.

Ashok Levland Ltd., Hvderabad, India:

Manufacturing Intern

Aug 2020 - Sep 2020

Conducted research in the market trends of Heavy-duty vehicles.

• Familiarized with the construction of trailers and tippers. Worked on the load parameters of vehicles.

ACADEMIC PROJECTS

Monocular Visual SLAM;

Python, OpenCV, Computer Vision

Spring 2022

Achieved Simultaneous Localization and Mapping using Monocular vSLAM.

- Calibrated a camera using Zhang's Calibration technique.
- Used ORB feature detection techniques to detect features.
- Estimated camera pose and performed bundle adjustment to decrease camera location noise.

8 x 3 Puzzle solver using BFS algorithm;

Python, Path Planning

Spring 2022

Programmed Breadth first search algorithm for an achieving required state in the puzzle.

- Developed a backtracking algorithm using parent and child relationship.
- Utilized concepts in NumPy to visualize the solution path generated.
- Used Action sets to perform actions in each state.

Implementation of Dijkstra Algorithm;

Python, OpenCV, Planning

Spring 2022

Programmed Dijkstra algorithm for planning robot path from start node to goal node.

- Defined the obstacle space using half planes and semi algebraic models.
 Computed backtracking using parent child node relation
- Computed backtracking using parent child node relation.
- Robot movement and compute path was visualized using computer vision techniques.

AR Tag detection;

OpenCV, Computer Vision

Spring 2022

Developed an algorithm to detect April tags.

- Used least significant bit to detect the orientation of the AR tag and homography to extract AR tag from frame.
- Performed different image filtration operations like morphing, dilation for efficient corner detection.
- Warped a custom image onto the detected AR tag based on the orientation.

Mouse solving a maze using DFS algorithm;

Python, Path Planning

Fall 2021

Leveraged Depth First Search (DFS) algorithm to compute the path to the goal.

- Programmed using C++ & OOPS concepts.
- Used data structures like Stacks, Vectors, Pairs to for data computation.
- Used API simulator for visualization.

Urban search & Rescue model using turtle Bot; C++, RViz, ROS

Fall 2021

Developed algorithms for multiple turtlebots to simulate the search and rescue operation.

- One bot explores and maps the locations of the victims, and the second bot is used for rescuing.
- Map and dictionaries were used for the data handling.
- Move Base package was used for navigation.